Nanoscale Effects in Water Splitting Photocatalysis.

نویسنده

  • Frank E Osterloh
چکیده

From a conceptual standpoint, the water photoelectrolysis reaction is the simplest way to convert solar energy into fuel. It is widely believed that nanostructured photocatalysts can improve the efficiency of the process and lower the costs. Indeed, nanostructured light absorbers have several advantages over traditional materials. This includes shorter charge transport pathways and larger redox active surface areas. It is also possible to adjust the energetics of small particles via the quantum size effect or with adsorbed ions. At the same time, nanostructured absorbers have significant disadvantages over conventional ones. The larger surface area promotes defect recombination and reduces the photovoltage that can be drawn from the absorber. The smaller size of the particles also makes electron-hole separation more difficult to achieve. This chapter discusses these issues using selected examples from the literature and from the laboratory of the author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photo corrosion of titania nanotubes within water splitting reaction

Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...

متن کامل

Photo corrosion of titania nanotubes within water splitting reaction

Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...

متن کامل

Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting.

Hydrogen production via photocatalytic water splitting using sunlight has enormous potential in solving the worldwide energy and environmental crisis. The key challenge in this process is to develop efficient photocatalysts which must satisfy several criteria such as high chemical and photochemical stability, effective charge separation and strong sunlight absorption. The combination of differe...

متن کامل

Hydrogen producing water treatment through solar photocatalysis†

Hydrogen is being intensively investigated as a new energy carrier that stores and transports energy obtained from renewable energy resources (e.g., solar and wind power) to the point of use. In particular, efficient methods that can convert solar energy into hydrogen are being actively sought. One of the ideal methods is solar hydrogen production from water splitting that can be driven by phot...

متن کامل

Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion.

Several strategies are currently being investigated for conversion of incident sunlight into renewable sources of energy, and photocatalytic or photoelectrochemical production of solar fuels can provide an important alternative. Titanium dioxide (TiO2) has been heavily investigated as a material of choice due to its excellent optoelectronic properties and stability, and anion-doping proposed as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Topics in current chemistry

دوره 371  شماره 

صفحات  -

تاریخ انتشار 2016